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It is also concluded in Ref. 1 that the attitude determination
accuracy will degrade with time, due to the instability of the
combined estimator-regulator system. This conclusion is not
correct, and is contradicted by comments following Eq. (9).
Though elements of the state covariance matrix (and the state
estimate covariance matrix) will grow without bound as time
becomes large, the elements of the state estimate error
covariance matrix will remain finite. This is guaranteed by the
fact that the two-state-variable system is observable with
measurements of ¥ and the state is controllable by the process
noise. 3

It is finally concluded in Ref. 1 that this instability of the
combined estimator-regulator problem imposes design
constraints on the attitude control system, in the sense that the
mission will end prematurely if the attitude and gyro drift rate
diverge too rapidly. This is not really the case, however. The
apparent instability arises only because Eqgs. (3) and (7) are
extremely simple representations of spacecraft and gyro
dynamics. While perhaps not unreasonable over a short time
interval, this model is unrealistic over long periods of time. A
simple modification of the model involves addition of the
term —d/7 to the right-hand side of Eq. (3). The consequent
modeling of gyro drift as a first-order Gauss-Markov process
with correlation time 7, rather than as a random walk,
eliminates the instability problem and -typically has a
negligible effect on the optimum estimator gains, for large 7.
The key point is that a satisfactory steady-state estimator can
be derived from a model which is simple and is reasonably
accurate only over short periods of time.
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comments. It is rightly pointed out that the instability of
the state covariance is due to the particular choice of the
system model. The model is approximate but has the ad-
vantage of easy on-board implementation. Since attitude
covariance convergence is not assured directly, this system
model fails to bring out the long-term performance of the
attitude determination scheme. The use of so many equations
to show the state covariance divergence is to find quan-
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titatively the amount of uncertainty expected of such a system
model at any given instant of time.

Even if a first-order Gauss-Markov process is used instead
of a white noise to represent the random change in the gyro
bias drift rate, the divergence of the attitude covariance
cannot be got rid of, since the system matrix pair (A4,B) is
still neither controllable nor stabilizable with drift rate
feedback control alone.

In order to ensure covergence of the attitude covariance, the
response of the attitude control system may be modelled with
a first-order lag, besides the gyro bias drift rate as a first-
order Gauss-Markov process.

v=—y/r;+d+u+y, d=—~d/T,+n,
where both 7, and 7, are large compared to the filter update
interval 7.

The system is still not controllable, but it is now stabilizable
with drift rate feedback alone. The attitude covariance of the
combined regulator-estimator now remains bounded as f— .
Analytical results on the long-term performance of the
algorithm with the modified model can then be derived.
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HE paper by A.J.M. Chakravarty® describes the formal

application of the two-variable Asymptotic Expansion
Procedure (AEP) to the problem of two-dimensional orbital
motion of a ballistic vehicle as perturbed by aecrodynamic
interaction with a variable-density atmosphere. The purpose
of this Technical Comment is to help place the reported study
in a somewhat wider context, and thereby draw attention to
some interesting and hopefully useful results obtained in
earlier studies on the same subject. Specifically, the wider
context sought is that of other, earlier, and formal ap-
plications of the multivariable AEP to the problem of
aerodynamically perturbed satellite motion.

A special case of the multivariable AEP is the two-variable
AEP (used in Ref. 1), developed by Kevorkian? (see also
Refs. 4 and 6). Here, two linear time-like ‘‘clocks’’ are used: a
““fast clock” 7, =7, and a ‘‘slow clock’ 7, =er (0<e<1),
where 7 represents the independent variable. In studies of two-
dimensional, aecrodynamically perturbed satellite motion the
independent variable typically represents the central angle
(between a suitable in-plane inertial reference vector and the
radius vector), whereas the small parameter e is usually
defined as the ratio of drag to weight at initial time.

Kevorkian applied the two-variable AEP to the problem of
two-dimensional, aerodynamically perturbed motion of a
ballistic satellite in a constant-density atmosphere? (see also
Ref. 3, p. 3). Kevorkian’s problem formulation was then
generalized by Simmons,?> who included the effects of
aerodynamic lift on the satellite orbit (see also Ref. 4, pp. 264-
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tWhere ““C”* indicates Chakravarty’s equations in Ref. 1.



